Analisis Sentimen Netizen Drama Korea “True Beauty” Pada Twitter

  • Anis Fitri Nur Masruriyah
  • Elsa Elvira Awal
Keywords: Drama, Sentimen Analysis, True Beauty, VADER

Abstract

K-Drama is widely liked by various cohorts, and provides inspiration in the work or motivates the lives of K-Drama enthusiasts. However, the opinion is not valid if the research has not been carried out or the opinion data has been processed properly. One of the K-dramas with the title "True Beauty" has a lot of fans because of the story that takes the theme of physical abuse. Because K-Drama is widely discussed in various media, it is necessary to analyze public sentimen towards this drama. From the tweets used in this study, with the VADER algorithm it is proven that "True Beauty" has a lot of enthusiasts and has received good responses.

References

Amaran, M. A., & Wen, L. M. (2018). Factors of watching Korean Drama Among Youth in Kuching City, Malaysia. International Journal of Arts and Commerce, 7(7), 33–48.

Anggraini, N., & Suroyo, H. (2019). Perbandingan Analisis Sentimen Terhadap Digital Payment “ T-cash dan Go-pay” Di Sosial Media Menggunakan Orange Data Mining. Journal of Information Systems and Informatics, 1(2), 152–163. https://doi.org/10.33557/journalisi.v1i2.21

Apsari, L., Mayangsari, M. D., & Erlyani, N. (2017). Pengaruh Perilaku Modeling Pada Tayangan Drama Korea Terhadap Citra Diri Remaja Penggemar Drama Korea. Jurnal Ecopsy, 3(3), 144–148. https://doi.org/10.20527/ecopsy.v3i3.2662

Budiharto, W., & Meiliana, M. (2018). Prediction and analysis of Indonesia Presidential election from Twitter using sentimen analysis. Journal of Big Data, 5(1), 1–10. https://doi.org/10.1186/s40537-018-0164-1

Felicia, & Loisa, R. (2019). Peran Buzzer Politik dalam Aktivitas Kampanye di Media Sosial Twitter. Koneksi, 2(2), 352. https://doi.org/10.24912/kn.v2i2.3906

Hasan, A., Moin, S., Karim, A., & Shamshirband, S. (2018). Machine Learning-Based Sentimen Analysis for Twitter Accounts. Mathematical and Computational Applications, 23(1), 11. https://doi.org/10.3390/mca23010011

Hutto, C. ., & Gilbert, E. (2014). VADER: A Parsimonious Rule-based Model for Sentimen Analysis of Social Media Text. Proceedings of the Eighth International AAAI Conference on Weblogs and Social Media, 216–225. https://www.aaai.org/ocs/index.php/ICWSM/ICWSM14/paper/viewPaper/8109

Ing, G. P., & Osman, Z. (2018). Korean Wave and Malaysian Young Adults: Attitudes,. Malaysian Jorunal of Business and Economics2, 5(1), 77–94. https://doi.org/10.1101/2020.11.10.376129

Jianqiang, Z., Xiaolin, G., & Xuejun, Z. (2018). Deep Convolution Neural Networks for Twitter Sentimen Analysis. IEEE Access, 6, 23253–23260. https://doi.org/10.1109/ACCESS.2017.2776930

Liu, Y., Yao, J., Lu, X., Xie, R., & Li, L. (2019). DeepCrack: A deep hierarchical feature learning architecture for crack segmentation. Neurocomputing, 338. https://doi.org/10.1016/j.neucom.2019.01.036

Mahmud, L. H., & Tryana. (2020). Building Learning Communities in Terms of Improving English Vocabulary Through Korean Drama With English Subtitle. Journal of Linguistics and Applied Linguistics, 2(1), 85–95.

Mustaqim, T., Umam, K., & Muslim, M. A. (2020). Twitter text mining for sentimen analysis on government’s response to forest fires with vader lexicon polarity detection and k-nearest neighbor algorithm. Journal of Physics: Conference Series, 1567(3). https://doi.org/10.1088/1742-6596/1567/3/032024

Prasanti, R. P., & Dewi, A. I. N. (2020). Dampak Drama Korea (Korean Wave) terhadap Pendidikan Remaja. Lectura: Jurnal Pendidikan, 11(2), 256–269. https://doi.org/10.2183/tja.75.1_27

Rahman, T. K. A., Rahim, A., Rafidah, S., Musirin, & Ismail. (2015). Optimal Allocation and Sizing of Embedded Generators.

Reyes-Menendez, A., Saura, J. R., & Alvarez-Alonso, C. (2018). Understanding #worldenvironmentday user opinions in twitter: A topic-based sentimen analysis approach. International Journal of Environmental Research and Public Health, 15(11). https://doi.org/10.3390/ijerph15112537

Rianawati, I. F., Eva, N., & Shanti, P. (2017). HUBUNGAN INTENSITAS MENONTON DRAMA KOREA (K-DRAMA) DAN KECENDERUNGAN GANGGUAN DISMORFIK TUBUH PADA PEREMPUAN DEWASA AWAL. In Jurnal Sains dan Seni ITS (Vol. 6, Issue 1).

http://repositorio.unan.edu.ni/2986/1/5624.pdf%0Ahttp://fiskal.kemenkeu.go.id/ejournal%0Ahttp://dx.doi.org/10.1016/j.cirp.2016.06.001%0Ahttp://dx.doi.org/10.1016/j.powtec.2016.12.055%0Ahttps://doi.org/10.1016/j.ijfatigue.2019.02.006%0Ahttps://doi.org/10.1

Tymann, K. M., Lutz, M., Palsbröker, P., & Gips, C. (2019). GerVADER - A German adaptation of the VADER sentimen analysis tool for social media texts. CEUR Workshop Proceedings, 2454.

Utomo, N. K., & Suprajitno, S. (2020). Multimodal Analysis on Product Placement in Korean Drama : “ Goblin .” 8(2), 219–225. https://doi.org/10.9744/katakita.8.2.219-225
Published
2020-07-15
How to Cite
Anis Fitri Nur Masruriyah, & Elsa Elvira Awal. (2020). Analisis Sentimen Netizen Drama Korea “True Beauty” Pada Twitter. BRITech, Jurnal Ilmiah Ilmu Komputer, Sains Dan Teknologi Terapan, 2(1), 50-57. Retrieved from //ejournal.bri-institute.ac.id/index.php/britech/article/view/80
Section
Articles