Profiling Calon Mahasiswa Program Studi Informatika Menggunakan Decision Tree

  • Rizki Hesananda
  • Ninuk Wiliani
  • Latifah
Keywords: Profiling, Data Mining, Classification, Decision Tree

Abstract

Prospective student data can be used as important information for academic community, therefore proper data management needed to process it. This research uses the prospective student throught the 2020 APERTI  scholarship path as the basis for the classification of prospective students which wasa previously done manually using Microsoft Excel so that the classification process is not optimal. The process of identifying profiles uses data mining to determine marketing plans and pattern of prospective students with a profile classification process as well as offering recommendations for them. This research used decision tree (C4.5). The attributes used for the classification process are father’s job, mother’s job, gender, school type, major and the choice of the chosen study program. The result of this research can be used to help sort out prospective students according to the informatics study program.

References

Agrawal, S., Vishwakarma, S. K., & Sharma, A. K. (2017). Using Data Mining Classifier for Predicting Studen�_s Performance in UG Level. International Journal of Computer Applications, 172, 39–44.

Agus Budiyantara, Irwansyah, Egi Prengki, P. A. P. (2020). Komparasi Algoritma Decision Tree, Naive Bayes Dan K-Nearest Neighbor Untuk Memprediksi Mahasiswa Lulus Tepat Waktu. 5(2), 265–270.

Desai, A., Shah, N., & Dhodi, M. (2017). Student profiling to improve teaching and learning: A data mining approach. Proceedings of the 2016 International Conference on Data Science and Engineering, ICDSE 2016. https://doi.org/10.1109/ICDSE.2016.7823947

Dietrich, S., Pander, M., Sander, M., & Ebert, M. (2013). Mechanical investigations on metallization layouts of solar cells with respect to module reliability. Energy Procedia. https://doi.org/10.1016/j.egypro.2013.07.308

Fok, W. W. T., Chen, H., Yi, J., Li, S., Yeung, H. H. A., Ying, W., & Fang, L. (2015). Data mining application of decision trees for student profiling at the open university of China. Proceedings - 2014 IEEE 13th International Conference on Trust, Security and Privacy in Computing and Communications, TrustCom 2014, 732–738. https://doi.org/10.1109/TrustCom.2014.96

Kurniawan, E., & Riadi, I. (2018). Analisis Tingkat Keamanan Sistem Informasi Akademik Berdasarkan Standar ISO 27002: 2013 Menggunakan SSE-CMM. In INTENSIF (Vol. 2, Issue 1). Online. http://ojs.unpkediri.ac.id/index.php/intensif

Puspitasari, N. (2016). Kontribusi Matematika Terhadap Ilmu Komputer Di D3 Manajemen Informatika Politeknik Indonusa Surakarta. Jurnal INFORMA Politeknik Indonesia Surakarta.

S, V., & S, D. (2015). Data Mining Classification Algorithms for Kidney Disease Prediction. International Journal on Cybernetics & Informatics, 4(4), 13–25. https://doi.org/10.5121/ijci.2015.4402

Valero-Fernandez, R., Collins, D. J., Lam, K. P., Rigby, C., & Bailey, J. (2017). Towards Accurate Predictions of Customer Purchasing Patterns. IEEE CIT 2017 - 17th IEEE International Conference on Computer and Information Technology. https://doi.org/10.1109/CIT.2017.58
Published
2020-07-15
How to Cite
Rizki Hesananda, Ninuk Wiliani, & Latifah. (2020). Profiling Calon Mahasiswa Program Studi Informatika Menggunakan Decision Tree. BRITech, Jurnal Ilmiah Ilmu Komputer, Sains Dan Teknologi Terapan, 2(1), 18-25. Retrieved from //ejournal.bri-institute.ac.id/index.php/britech/article/view/76
Section
Articles